Space

Accelerating the future of space technology

Comment

Image Credits: John Devolle

Alice Lloyd George

Contributor

Alice Lloyd George is an early stage investor based in New York and the host of Flux, a series of podcast conversations with leaders in frontier technology.

More posts from Alice Lloyd George

At this moment there are more than 500,000 pieces of space debris hurtling around the Earth. Traveling at speeds of up to 40,000 kilometers per hour, a satellite collision with these fragments is enough to damage and even destroy our communications networks.

Accion Systems is building the technology to prevent that. The company, which spun out of MIT in 2014, manufactures ion engines that enable satellites to maneuver in space and avoid these collisions.

In an interview for Flux, I sat down with Natalya Bailey, the co-founder and CEO of Accion Systems. She reveals how the company is able to meet the needs of the burgeoning small satellite industry and why legacy manufacturers can’t keep up, how she’s handled the jump from academia to business and what she’s learned from Bill Swanson of Raytheon about managing a team.

Bailey also discusses how the Apollo mission helped push computing forward, why space exploration is critical for our survival and how to get more women into STEM fields.

An excerpt of the conversation is published below.

Natalya Bailey, co-founder and chief executive of Accion Systems, holds a 1U CubeSat prototype with four microthruster modules.

 

AMLG: Today I’m excited to welcome Natalia Bailey, founder and CEO of Accion Systems. Accion was founded three years ago  —  they build liquid ion systems that power the electric propulsion in satellites. It’s a technology that could change the dynamics in space by enabling satellites to maneuver and reposition, extending their lifetime, which is pretty huge, and could be used for a lot of missions including (one day) interplanetary exploration. Welcome Natalya, great to have you here.

NB: Thanks for having me on the show.

AMLG: Let’s jump in. I’d love to hear how you came to found Accion  —  how did you get where you are now?

NB: My path to founding Accion started with my interest in studying space propulsion and doing research in the field. That brought me to MIT for my PhD in aeronautics and astronautics.

Actually prior to starting there, I was doing my masters at Duke and tried to start a rocket company, with different technology but similar ideas, and that company kind of imploded. I thought that would be my last go at entrepreneurship and startups, so I went to do my PhD and thought I would end up as a professor or at a research lab. And I started working on this new type of ion engine. We ended up getting a lot of interest from industry. The timing was phenomenal  — as we were testing proof of concept of this technology the whole industry was getting more interested in smaller satellites. There was this huge technology gap as far as propulsion goes and we were working on exactly the thing that could fill that gap. We had some of the big aerospace companies, the Lockheeds and the Boeings of the world, coming to MIT and trying to license the technology or buy systems from MIT. My research advisor remembered that I had tried to start a company once before so he knew I had entrepreneurial leanings and suggested I try again.

It was in 2012 that my labmate and I decided to spin out, so we formed a placeholder company to grab the IP. Then I defended my PhD and he dropped out, and we officially spun out in 2014 and hit the ground running.

AMLG: Were you surprised by all the interest coming from these big companies  —  the Lockheeds, the Boeings? Did you have to ward them off? Was it tempting to license out all the core tech, or did you feel a huge relief that you knew you’d hit on the right opportunity?

NB: Looking back it feels like a pretty clear sign of product market fit. I think it was Marc Andreessen or Ben Horowitz who said, “If the market really wants a technology it will pull it out of a company.” So even if the team is inexperienced and moving slowly and there are other challenges, if the market really wants something, that strong force can make it happen. We also still live under the fantastical notion that no one out there can necessarily manufacture these systems better than we can, because they’re non-traditional for aerospace. There aren’t established manufacturing plants or processes at a Lockheed that could make these technologies better than we can. So that was a neat position to be in.

AMLG: It seems crazy that they don’t have this capability. Is it just too niche for them to allocate resources? What’s the advantage of being a startup doing this?

NB: The technology itself is very different, and the manufacturing. We leverage MEMs fabrication techniques  —  the same manufacturing lines that are used to make Intel computer processors  —  we use those to make our thruster chips. A Lockheed, who wouldn’t traditionally be making computer processors, doesn’t have those capabilities set up.

AMLG: So you found this specific niche that they can’t tackle. For listeners that don’t know what a propulsion system on a satellite does, can you explain why it’s so important?

NB: The main application is for onboard propulsion systems, that’s what we’re working on. That’s different from launching from the surface of the Earth. We deal with when the satellite’s already in space. If you look at the progression of a mission, a satellite is launched into orbit on a big bulky rocket that’s not very precise, so first it will have to reposition itself to get where it actually intended to go.

Then over the lifetime of the mission, there are always small disturbances pulling the satellite off of its intended track. It has to correct for those, like gravity and atmospheric drag and other perturbations.

You also have to budget for collision avoidance. If NASA notifies you that you’re on track to collide with something, you’re responsible for moving out of the way. Then at the end of a lifetime of a satellite you’re also responsible for de-orbiting it. You can’t leave a satellite in orbit indefinitely  —  that’s called space junk and it’s a hot-button topic for us. So that’s one of the most typical missions, but as we start going beyond low-earth orbit, propulsion systems are also useful for transferring orbits, for reaching the moon and Mars and other interplanetary exploration missions.

More than 500,000 pieces of space debris orbit the Earth, traveling at speeds up to 17,500 mph, fast enough for a small piece of debris to damage a satellite or a spacecraft. Here is a time-lapse showing the accumulation since 1984 [Full video from European Space Agency].
AMLG: Can you talk about the concrete applications for the first set of satellites that will be using your technology?

NB: Ultimately the two main applications are imaging or earth observation and communications. Those are the two main applications commercially that we’ll be addressing. Our initial batch of customers happen to be folks that can tolerate higher risk. We haven’t been launching propulsion systems into space for the past 10 years like some of the more established players would like for their suppliers. So our initial batch of customers are trying to do things like take a small satellite from low-earth orbit to lunar orbit, or trying to demonstrate other novel technology or mission components that haven’t been proven before. So we’re focusing on those higher-risk-tolerance customers right now.

AMLG: You mentioned interplanetary and Mars  —  a bunch of people in the industry are complaining that SpaceX’s focus on Mars colonization has pulled attention away from regular rocket launches and supporting the ecosystem of near-earth satellites, and those near-earth satellites are probably most of your customer base. What are your thoughts on that?

NB: Two thoughts on that. First, it’s analogous to Apollo in the sense that when you have an incredible, audacious goal that you set out to achieve, the spin-off technologies and other challenges you have to solve along the way are actually extremely beneficial in other areas, not just space. Looking at Apollo, you could even argue that some of the returns on that investment were computers in general, and everything else that came out of that program.

AMLG: What did we get specifically out of Apollo in terms of computer advances?

NB: The personal computer was just starting to be thought of around that time, and in a lot of the early Apollo missions everything was done by hand calculations, then later they started to input the punch hole cards into a computer on board. It was right at that transition point to computing, and a lot of money was being funneled into developing it for Apollo. So fans of Apollo say that computers came about because of that program. I think, in general, setting big hairy goals for an entire nation to achieve usually ends in a lot of cool spin-off technologies.

The other thing about Mars colonization is, if you think about humankind as a species, if we’re around 300-400 years from now, it’s probably not because we stayed put on Earth. For our long-term preservation, it’s worth starting to explore other planets in the solar system, and hopefully eventually beyond that.

AMLG: Where did this interest in exploring other planets come from. You grew up in Oregon right? What was that like and how did you get interested in space?

NB: Growing up in Oregon was great. It was very outdoorsy, I don’t really remember spending any time indoors. I would spend nights outside on my trampoline. In Oregon there’s not a lot of light pollution so I could look at the stars. I would think about aliens and then notice these very solid specks of light moving across the sky and I realized they weren’t airplanes. So I tried to figure out what they could be and realized I was watching the space station. Mostly I wanted to study aliens but my family is quite practical so I decided to combine that with math, which I loved, and ended up in aerospace engineering. I haven’t looked back since.

AMLG: Were you always interested in science? Were your parents interested in science?

NB: Yeah. My dad was a biologist. I was always gathering bugs and studying them and keeping them in tanks in my bedroom until my parents found them. In school I started excelling in math and found that it came easily to me. That combined with the science and alien bit led me to engineering.

AMLG: When you talk about aliens I think of one of my favorite books by Carl Sagan  —  Contact. I don’t know if you ever watched the movie or read the book, but I picture you like Ellie in that film. She’s this brilliant scientist and stumbles across something big.

NB: I’ve definitely seen it. I’m currently making my way through Carl Sagan’s original Cosmos again.

AMLG: I love the original Cosmos. I’m a huge Carl Sagan fan, I love his voice, he’s so inspiring to listen to. Talking about books, I know you’re an avid reader. Did any books in particular influence you or your path to building Accion?

NB: Well I’m a gigantic Harry Potter fan and a lot of things around Accion are named after various aspects of Harry Potter, including the name Accion itself.

AMLG: Is that the Accio spell? The beckoning spell?

NB: Yes exactly. My co-founder and I were g-chatting late one night on a weekend and looking through a glossary of Harry Potter spells trying to name the company. Accio, the summoning spell, if you add an “N” to the end of it, it becomes a concatenation between “accelerate” and “ion,” which is what we do. That’s the official story of how we named the company, but really it was from the glossary of spells.


A quote from Carl Sagan’s 1980s TV Series, “Cosmos

[To continue reading, a full transcript of the conversation can be found on Medium.]

More TechCrunch

Welcome to Week in Review: TechCrunch’s newsletter recapping the week’s biggest news. This week Apple unveiled new iPad models at its Let Loose event, including a new 13-inch display for…

Why Apple’s ‘Crush’ ad is so misguided

The U.K. Safety Institute, the U.K.’s recently established AI safety body, has released a toolset designed to “strengthen AI safety” by making it easier for industry, research organizations and academia…

U.K. agency releases tools to test AI model safety

AI startup Runway’s second annual AI Film Festival showcased movies that incorporated AI tech in some fashion, from backgrounds to animations.

At the AI Film Festival, humanity triumphed over tech

Rachel Coldicutt is the founder of Careful Industries, which researches the social impact technology has on society.

Women in AI: Rachel Coldicutt researches how technology impacts society

SAP Chief Sustainability Officer Sophia Mendelsohn wants to incentivize companies to be green because it’s profitable, not just because it’s right.

SAP’s chief sustainability officer isn’t interested in getting your company to do the right thing

Here’s what one insider said happened in the days leading up to the layoffs.

Tesla’s profitable Supercharger network is in limbo after Musk axed the entire team

StrictlyVC events deliver exclusive insider content from the Silicon Valley & Global VC scene while creating meaningful connections over cocktails and canapés with leading investors, entrepreneurs and executives. And TechCrunch…

Meesho, a leading e-commerce startup in India, has secured $275 million in a new funding round.

Meesho, an Indian social commerce platform with 150M transacting users, raises $275M

Some Indian government websites have allowed scammers to plant advertisements capable of redirecting visitors to online betting platforms. TechCrunch discovered around four dozen “gov.in” website links associated with Indian states,…

Scammers found planting online betting ads on Indian government websites

Around 550 employees across autonomous vehicle company Motional have been laid off, according to information taken from WARN notice filings and sources at the company.  Earlier this week, TechCrunch reported…

Motional cut about 550 employees, around 40%, in recent restructuring, sources say

The deck included some redacted numbers, but there was still enough data to get a good picture.

Pitch Deck Teardown: Cloudsmith’s $15M Series A deck

The company is describing the event as “a chance to demo some ChatGPT and GPT-4 updates.”

OpenAI’s ChatGPT announcement: What we know so far

Unlike ChatGPT, Claude did not become a new App Store hit.

Anthropic’s Claude sees tepid reception on iOS compared with ChatGPT’s debut

Welcome to Startups Weekly — Haje‘s weekly recap of everything you can’t miss from the world of startups. Sign up here to get it in your inbox every Friday. Look,…

Startups Weekly: Trouble in EV land and Peloton is circling the drain

Scarcely five months after its founding, hard tech startup Layup Parts has landed a $9 million round of financing led by Founders Fund to transform composites manufacturing. Lux Capital and Haystack…

Founders Fund leads financing of composites startup Layup Parts

AI startup Anthropic is changing its policies to allow minors to use its generative AI systems — in certain circumstances, at least.  Announced in a post on the company’s official…

Anthropic now lets kids use its AI tech — within limits

Zeekr’s market hype is noteworthy and may indicate that investors see value in the high-quality, low-price offerings of Chinese automakers.

The buzziest EV IPO of the year is a Chinese automaker

Venture capital has been hit hard by souring macroeconomic conditions over the past few years and it’s not yet clear how the market downturn affected VC fund performance. But recent…

VC fund performance is down sharply — but it may have already hit its lowest point

The person who claims to have 49 million Dell customer records told TechCrunch that he brute-forced an online company portal and scraped customer data, including physical addresses, directly from Dell’s…

Threat actor says he scraped 49M Dell customer addresses before the company found out

The social network has announced an updated version of its app that lets you offer feedback about its algorithmic feed so you can better customize it.

Bluesky now lets you personalize main Discover feed using new controls

Microsoft will launch its own mobile game store in July, the company announced at the Bloomberg Technology Summit on Thursday. Xbox president Sarah Bond shared that the company plans to…

Microsoft is launching its mobile game store in July

Smart ring maker Oura is launching two new features focused on heart health, the company announced on Friday. The first claims to help users get an idea of their cardiovascular…

Oura launches two new heart health features

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI considers allowing AI porn

Garena is quietly developing new India-themed games even though Free Fire, its biggest title, has still not made a comeback to the country.

Garena is quietly making India-themed games even as Free Fire’s relaunch remains doubtful

The U.S.’ NHTSA has opened a fourth investigation into the Fisker Ocean SUV, spurred by multiple claims of “inadvertent Automatic Emergency Braking.”

Fisker Ocean faces fourth federal safety probe

CoreWeave has formally opened an office in London that will serve as its European headquarters and home to two new data centers.

CoreWeave, a $19B AI compute provider, opens European HQ in London with plans for 2 UK data centers

The Series C funding, which brings its total raise to around $95 million, will go toward mass production of the startup’s inaugural products

AI chip startup DEEPX secures $80M Series C at a $529M valuation 

A dust-up between Evolve Bank & Trust, Mercury and Synapse has led TabaPay to abandon its acquisition plans of troubled banking-as-a-service startup Synapse.

Infighting among fintech players has caused TabaPay to ‘pull out’ from buying bankrupt Synapse

The problem is not the media, but the message.

Apple’s ‘Crush’ ad is disgusting

The Twitter for Android client was “a demo app that Google had created and gave to us,” says Particle co-founder and ex-Twitter employee Sara Beykpour.

Google built some of the first social apps for Android, including Twitter and others