The Genome Engineering Revolution

Comment

Image Credits: Sashkin (opens in a new window) / Shutterstock (opens in a new window)

Ryan Clarke

Contributor

More posts from Ryan Clarke

Editor’s note: Ryan Clarke is a biochemistry PhD candidate with an interest in genetic engineering. He is a published scientist with a background in synthetic biology and social analytics. James Hyun is a PhD student in the life sciences with a background in molecular biology. He has published numerous scientific papers where genetically engineered microorganisms were used to produce high value therapeutic proteins.

Over the years, the debate surrounding the ethics of genome engineering research and applications has cultivated a sense of fear that societies depicted in movies like Gattaca, or the book Brave New World, could come to fruition. Although these scenarios seem socially impossible to execute, they were ultimately deemed scientifically far-fetched because the complexity of such tasks requires robust genome engineering skills and tools.

These discussions presented the notion that similar situations would begin to be confronted in the “distant” future, but that future is now. On April 22, 2015, the first-ever attempt to genome engineer a living human embryo was published in Protein & Cell, and this attempt was made possible by the newly embraced CRISPR-cas9 system.

The CRISPR-cas9 system makes gene editing in many organisms and cells — like our own egg, sperm or embryo — more efficient, accessible and simple than ever before. These groundbreaking capabilities have spawned discussions surrounding the ethics and applications of the new system, and have garnered significant attention around the world to ensure ethically correct usage.

This article is a follow-up to the recent TechCrunch article by Michael Solana regarding superhumanity being achieved through genome engineering; it explains the what, how and why of the system responsible for these rapid advancements. More importantly, the outstanding medical accomplishments achieved using the system, as well as the realistic prospects of germline engineering, will be briefly discussed with the hope of alleviating confusion and fears of the status of human genome engineering.

A brief introduction to the CRISPR-cas9 system

Clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR associated protein 9 (CRISPR-cas9), has revolutionized molecular biology and the field of genome engineering.

Discovered as an adaptive immune system in bacteria for protection against bacteria invading viruses, CRISPR-cas9 was creatively seen by Jennifer Doudna’s group at Berkeley as a way to target and edit a genome. Consistent research and application has shown that the human genome (as well as plants, mice, bacteria, etc.) can be edited cheaply, quickly and efficiently with the CRISPR-cas9 system. 

The premise of editing the genome is basically the same across all systems. A gene of interest is targeted to modify its function, and an enzyme cuts that gene’s DNA sequence, breaking the structure of the DNA. After the cutting occurs, a new gene can be inserted or a change to the existing sequence can be made (via a process termed homologous recombination), or a stretch of the genomic DNA can be deleted.

CRISPR-cas9 is similar to other tools used for genome engineering in that it permanently modifies an organism’s genome, so that each successive generation of offspring will carry the change.

To target a gene of interest using CRISPR-cas9, the system requires a common, simple and easily synthesized DNA recognition method: RNA. RNA and DNA are very similar in structure and chemical composition, and bind to each other in a strong, predictable fashion. This allows for highly specific and efficient targeting to the gene(s) of interest:

Genome1
The guide RNA is specific to a sequence in the genome. This specificity directs the cas9 protein to this target sequence, where cas9’s intrinsic nuclease activity cuts/modifies the DNA directly. All that changes from one gene edit attempt to the next is the guide RNA sequence.

All one needs is the cas9 protein, which is available at addgene (on plasmids) for approximately $65, and a specific guide RNA to target the gene(s) of interest, which can be ordered from IDT for roughly $10 per unit.

CRISPR-cas9’s major triumph over the previous technologies is that multiple genes can be edited cheaply and efficiently in one attempt. CRISPR-cas9’s recent predecessors, Zinc Finger Nucleases (ZFNs) and TALENs, required complex proteins to be engineered to recognize and bind the gene of interest in order to edit — ultimately introducing extremely high costs to successfully use the systems (see table below). And before all modern genome engineering systems, targeting vectors were the most accessible method and was discouragingly inefficient and limiting.

The decreased price and increased usability of CRISPR-cas9 present bypasses the impression that complex genome engineering requires seemingly unattainable resources for most scientists:

Rough cost per target gene Target Validation Time* Complexity Threshold** Adoption of Technology Mode of DNA Recognition Mode of DNA Modification
Targeting Vectors jn/a–varies massively 4-12 weeks 1-3 1990s Vector DNA homology to Host genomic DNA Host cellular machinery
Zinc Finger Nucleases (ZFNs) $4000-$7000 8 weeks Multiple ~2000 Zinc Finger Protein Zinc Finger fused to Fok1 nuclease***
TALENs $2500-$4000 8 weeks Multiple ~2011 Transcription Activator Like Effector (TALE) Protein TALE fused to Fok1 nuclease
Cas9 $50-$100 2-4 weeks Multiple ~2013 guide RNA cas9 intrinsic nuclease activity
A comparison of prevalent genome engineering technologies. (*Target validation: how long it takes to ensure proper gene targeting. **Complexity threshold: the number of genes that can likely be targeted in one attempt. ***Nuclease: an enzymatic activity responsible for the cleavage of DNA.)

 

Since the cas9 protein and the guide RNA are smaller and cheaper than any genome engineering technology in existence, and a guide RNA that targets any gene in a genome can be quickly and easily made, almost all model organisms and laboratory cell lines have been genetically modified using the system:

Genome2
Doudna et al., Science 2014

 

In summary, cas9’s ability to efficiently modify and delete multiple genes at once — with high specificity — has revolutionized the field. It has empowered scientists around the world with limited resources to conduct groundbreaking research. It has allowed molecular biologists to successfully modify human cell lines and complex model organisms, like monkeys.

We can now take genome engineering from the lab bench to the clinic in a dream-like fashion, making the medical application of gene therapy and engineering possible with astonishing speed.

Applications of the cas9 system in academia and industry

For medical research and application animal models and human cell lines are generated to emulate human diseases that are genetic in nature, and the cas9 system has been used in many impressive circumstances to date to generate these models and to begin curing diseases.

Groups of researchers in academia and the biological engineering/pharmaceutical industry have targeted many diseases that had previously shown little or no hope for a cure. However, this fate may be changed due to cas9. Here are a few examples:

  • HIV cure. The cells that HIV infects (T Cells) have been modified to not express the receptor (CCR5) that HIV binds to in order to infiltrate and infect our cells. These modified cells can be placed back into the bloodstream where they are resistant to HIV infection.
  • Cystic Fibrosis. The gene responsible (a cellular ion pump, CFTR) for cystic fibrosis has been modified and fixed in human stem cells.
  • Autism. Genes suspected of causing autism (SHANK3) are being modified at the embryonic level in monkeys to emulate and study human autism.
  • Muscular Dystrophy. The gene typically mutated in muscular dystrophy, dystrophin, was corrected in the mouse germline to produce mouse offspring cured of the disease.
  • Engineered T Cells (CAR T Cells). Our immune system’s T cells are being modified to recognize and attack specific cancer types.
  • Drug Discovery and Studies. Cas9 has been used to create “genome wide knock-out screens” (screens that knock out every single gene in the genome, one at a time per cell) to search for genes that provide resistance to existing drugs, like chemotherapies, or to discover genes that contribute to certain diseases. From here, new drugs can be created or old drugs modified based on the data provided by the screen.

Ph.D.s like George Church of Harvard, Feng Zhang of MIT and of course its discoverer Jennifer Doudna of Berkeley, as well as many others are pioneering the forefront of the technology in academia.

In industry, there have been many biotech startups that have been founded in the last two years with the intention to use cas9 technology as a platform for creating genetic therapies and drugs for many diseases.

To name a few with exciting pipelines: Editas Medicine (Zhang, Church, and Doudna), CRISPR Therapeutics, Intellia Therapeutics and Caribou Biosciences. These companies have received support from VCs, including Flagship Ventures and Atlas Ventures. Even big pharma, which is notorious for slow adoption of the newest scientific technologies, has begun to dabble with the cas9 system by partnering with some of the startups, or by collaborating and creating cas9-specific R&D wings.

This technology seems to have limitless applications for furthering medicinal research and creation of new therapies:

Genome3
Doudna et al., Science 2014

 

With great power comes great responsibility

Understandably, the rapid usage, optimization, and further development of cas9 technology has spawned a great deal of ethical debate. With our newfound ease to theoretically modify any gene in the human genome at the germline level, scientists around the world have expressed concerns. Some have stated that human germline engineering can result in unwanted consequences and should simply not exist. Measures have even been taken in the EU to ban human germline engineering.

In the wrong hands, the excuse of changing one’s genes for the purpose of having a healthier life can be perpetrated for many unethical changes. What genes are categorized as “healthy” could potentially spur black market clinics that use this technology to dictate specific traits. Social preferences may skew the genetic balance of the human species.

Although the creation of “designer babies” may be possible in the near future, one has to wonder whether the scientific community would prioritize such applications over medical applications. The resources and manpower to successfully complete a designer baby engineering project would require much more than a skilled genetic engineer and some lab space. To support this thought, this week’s aforementioned and recent publication reported the successes and failures when using cas9 to genome engineer a human embryo.

This bold study began to lay the framework for the obstacles that need to be overcome for such endeavors to become household in the lab, and they ultimately proved we have a long way to go for trustworthy embryo engineering. The study revealed many off-target effects (random introduction of mutations) and low efficiency levels for introduction of the corrective gene they were using.

“If you want to do it in normal embryos, you need to be close to 100%,” the lead investigator of the study, Jinjiu Huang, stated. “That’s why we stopped. We still think it’s too immature.”

Therefore, actively avoiding fears and rumors like designer babies should ensure continuous progress of such an important technology. To help circumvent this, there is a growing consensus that science cannot be done with the public being kept in the dark — that there is a need to bridge the disconnect between the general public and the research conducted.

Such transparency and active discussion will be imperative to the successes of the applications of cas9, because when a biological technology is not fully understood by scientists and the public, or comprehensively discussed before major application, a dangerous game is played.

Global involvement will help us avoid another genetically modified foods (GMOs) situation, which stemmed from research and industry activity behind closed doors, ultimately leading to a global nebulous understanding of GMOs in general.

Fortunately, a recent conference to discuss cas9’s applications in germline gene modification was held in Napa Valley led by Jennifer Doudna.

“Given the speed with which the genome engineering field is evolving, the Napa meeting concluded that there is an urgent need for open discussion of the merits and risks of human genome modification by a broad cohort of scientists, clinicians, social scientists, the general public, and relevant public entities and interest groups,” stated the authors of the article summarizing the conference.

The conference seems to have initiated the desired transparency and global involvement, and the group closed out its discussion article with a few suggestions:

  1. Avoid human germline genome engineering for clinical application.
  2. Create forums in which experts from the scientific and bioethics communities can provide information and education about this new era of human biology.
  3. Encourage and support transparent research to evaluate the efficacy and specificity of CRISPR-Cas9 genome engineering technology in human and nonhuman model systems relevant to its potential applications for germline gene therapy.
  4. Convene a globally represented group of developers and users of genome engineering technology, and experts in genetics, law and bioethics, as well as members of the scientific community, the public and government agencies to further consider these issues and place appropriate policies.

The fact that a powerful and successful discussion on applications of cas9 has been held is a major step forward for genome engineering and its applications. To make breakthroughs, there is a certain amount of risk involved, but as long as both scientists and public understand the risks and share a common purpose, we can continue to improve and use this technology for the betterment of the human race and to save lives.

More TechCrunch

Tags

The U.K.’s self-proclaimed “world-leading” regulations for self-driving cars are now official, after the Automated Vehicles (AV) Act received royal assent — the final rubber stamp any legislation must go through…

UK’s autonomous vehicle legislation becomes law, paving the way for first driverless cars by 2026

ChatGPT, OpenAI’s text-generating AI chatbot, has taken the world by storm. What started as a tool to hyper-charge productivity through writing essays and code with short text prompts has evolved…

ChatGPT: Everything you need to know about the AI-powered chatbot

SoLo Funds CEO Travis Holoway: “Regulators seem driven by press releases when they should be motivated by true consumer protection and empowering equitable solutions.”

Fintech lender Solo Funds is being sued again by the government over its lending practices

Hard tech startups generate a lot of buzz, but there’s a growing cohort of companies building digital tools squarely focused on making hard tech development faster, more efficient, and —…

Rollup wants to be the hardware engineer’s workhorse

TechCrunch Disrupt 2024 is not just about groundbreaking innovations, insightful panels, and visionary speakers — it’s also about listening to YOU, the audience, and what you feel is top of…

Disrupt Audience Choice vote closes Friday

Google says the new SDK would help Google expand on its core mission of connecting the right audience to the right content at the right time.

Google is launching a new Android feature to drive users back into their installed apps

Jolla has taken the official wraps off the first version of its personal server-based AI assistant in the making. The reborn startup is building a privacy-focused AI device — aka…

Jolla debuts privacy-focused AI hardware

OpenAI is removing one of the voices used by ChatGPT after users found that it sounded similar to Scarlett Johansson, the company announced on Monday. The voice, called Sky, is…

OpenAI to remove ChatGPT’s Scarlett Johansson-like voice

The ChatGPT mobile app’s net revenue first jumped 22% on the day of the GPT-4o launch and continued to grow in the following days.

ChatGPT’s mobile app revenue saw its biggest spike yet following GPT-4o launch

Dating app maker Bumble has acquired Geneva, an online platform built around forming real-world groups and clubs. The company said that the deal is designed to help it expand its…

Bumble buys community building app Geneva to expand further into friendships

CyberArk — one of the army of larger security companies founded out of Israel — is acquiring Venafi, a specialist in machine identity, for $1.54 billion. 

CyberArk snaps up Venafi for $1.54B to ramp up in machine-to-machine security

Founder-market fit is one of the most crucial factors in a startup’s success, and operators (someone involved in the day-to-day operations of a startup) turned founders have an almost unfair advantage…

OpenseedVC, which backs operators in Africa and Europe starting their companies, reaches first close of $10M fund

A Singapore High Court has effectively approved Pine Labs’ request to shift its operations to India.

Pine Labs gets Singapore court approval to shift base to India

The AI Safety Institute, a U.K. body that aims to assess and address risks in AI platforms, has said it will open a second location in San Francisco. 

UK opens office in San Francisco to tackle AI risk

Companies are always looking for an edge, and searching for ways to encourage their employees to innovate. One way to do that is by running an internal hackathon around a…

Why companies are turning to internal hackathons

Featured Article

I’m rooting for Melinda French Gates to fix tech’s broken ‘brilliant jerk’ culture

Women in tech still face a shocking level of mistreatment at work. Melinda French Gates is one of the few working to change that.

1 day ago
I’m rooting for Melinda French Gates to fix tech’s  broken ‘brilliant jerk’ culture

Blue Origin has successfully completed its NS-25 mission, resuming crewed flights for the first time in nearly two years. The mission brought six tourist crew members to the edge of…

Blue Origin successfully launches its first crewed mission since 2022

Creative Artists Agency (CAA), one of the top entertainment and sports talent agencies, is hoping to be at the forefront of AI protection services for celebrities in Hollywood. With many…

Hollywood agency CAA aims to help stars manage their own AI likenesses

Expedia says Rathi Murthy and Sreenivas Rachamadugu, respectively its CTO and senior vice president of core services product & engineering, are no longer employed at the travel booking company. In…

Expedia says two execs dismissed after ‘violation of company policy’

Welcome back to TechCrunch’s Week in Review. This week had two major events from OpenAI and Google. OpenAI’s spring update event saw the reveal of its new model, GPT-4o, which…

OpenAI and Google lay out their competing AI visions

When Jeffrey Wang posted to X asking if anyone wanted to go in on an order of fancy-but-affordable office nap pods, he didn’t expect the post to go viral.

With AI startups booming, nap pods and Silicon Valley hustle culture are back

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

A new crop of early-stage startups — along with some recent VC investments — illustrates a niche emerging in the autonomous vehicle technology sector. Unlike the companies bringing robotaxis to…

VCs and the military are fueling self-driving startups that don’t need roads

When the founders of Sagetap, Sahil Khanna and Kevin Hughes, started working at early-stage enterprise software startups, they were surprised to find that the companies they worked at were trying…

Deal Dive: Sagetap looks to bring enterprise software sales into the 21st century

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI moves away from safety

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets