AI

How to approach machine learning as a non-technical person

Comment

Aria Haghighi

Contributor

Aria is the CTO and Chief Architect at Pioneer Square Labs.

The last few years have seen an explosion of interest in machine learning technology and potential applications. As a non-expert, you’ve probably either had to assess ML technology for your product and business or as a potential investment. The jargon around ML technology is vast, confusing and, unfortunately, increasingly being hijacked by overeager sales teams.

This post is not a primer on ML technology; this post won’t pretend to give you an explanation of deep learning or any specific technology, because these concepts change frequently and are largely irrelevant to much of the decision making. Instead, this post will address how to assess the technology and determine if it will yield pragmatic business value.

Understand the task

Ultimately, ML is meant to be used in the context of a given task, a problem with inputs and a way to objectively assess how right or wrong an output is. While you may not understand the technology being used, it’s crucial to understand the task.

Don’t accept vagueness or something poorly defined like “understanding what a sentence means.” If someone can’t explain what their ML actually does independently of technical jargon, it’s a bad sign.

At a high level there are common kinds of tasks frequently seen in ML: classification, regression and ranking. For instance, image recognition, such as in ImageNet, is a classification task where we have an input image and want to predict the primary subject matter of the image (a photo of a dog, car, etc.).

Regression is about predicting a real numerical value or values from an input, such as predicting the future value of a home or a stock portfolio. Ranking is about predicting an ordering of items which is “best” in a given setting; for instance, in search ranking, we want to order results that are most relevant for a given query and user profile and history.

So when you’re hearing about an ML pitch of some kind, it’s important to take a step back and get an explanation.

Understand the evaluation metric

Once you understand the task, it’s important to understand how the ML system is being evaluated on that task. Typically, people will define a system evaluation metric that gives a quantitative measure of how well the system does on the task. As an example, in image recognition you can report what percent of the time you predict the right category for an image (e.g. I correctly guessed this was an image of a dog). The common ML tasks (classification, regression and ranking) all have standard evaluation metrics with which it would be worth familiarizing yourself.

It’s unfortunately quite common for people to develop very complex algorithms and technology for problems, but not actually develop an objective evaluation metric. Not having a metric is a very bad sign. There’s no objective way to actually know whether their “super deep learning” actually yields any tangible benefits. When it comes to building ML, or any technology really, for business value, you want to work with people who focus and drive by metrics.

A common and frustrating reality is that more complex ML technology does not necessarily mean improvements on evaluation metrics; especially in environments with limited data, simple techniques frequently outperform more complex ones.

The corollary of this is if you’re building ML, always develop and try simpler methods first. I’ve personally consulted on many projects where people have heavily invested in ML only to find out something vastly simpler (in more than one case just Naive Bayes) performed at least as well, with an order of magnitude more speed and less development time.

Understand how ML improvements impact business metrics

The last and trickiest aspect of assessing ML technology is understanding how improvements on the ML task will impact which business metrics and by how much. Sometimes there’s a very direct relationship. For instance, for ad placement in search results, the ML metric is typically predicting the probability of ad click-through (possibly weighted by expected CPC).

The rate and revenue-generated ad click-through is either a core business metric or closely related to one. In this setting, it makes a lot of sense to invest heavily in ML, because gains will likely improve business metrics.

In other settings, the relationship is less clear. For instance, at Netflix, improving movie recommendation quality by 0.5 percent, while difficult, does not necessarily mean that month-over-month subscriber retention will necessary budge (although something like engagement might).

As a product owner or investor, it’s important that you understand which business metric you want to actually move and whether or not ML improvements might actually yield those changes.

Unsurprisingly, this might be part of why Google invests so heavily in ML, because improvements are strongly correlated with key business and financial metrics. On the flip side, for Apple, a 1 percent improvement to Siri has a much weaker and tenuous relationship with how many iPhones are sold.

If you want to work on ML in products or invest in the area, it’s crucial to understand whether this really is an area where ML can “move” the needle.

More TechCrunch

The Series C funding, which brings its total raise to around $95 million, will go toward mass production of the startup’s inaugural products

AI chip startup DEEPX secures $80M Series C at a $529M valuation 

A dust-up between Evolve Bank & Trust, Mercury and Synapse has led TabaPay to abandon its acquisition plans of troubled banking-as-a-service startup Synapse.

Infighting among fintech players has caused TabaPay to ‘pull out’ from buying bankrupt Synapse

The problem is not the media, but the message.

Apple’s ‘Crush’ ad is disgusting

The Twitter for Android client was “a demo app that Google had created and gave to us,” says Particle co-founder and ex-Twitter employee Sara Beykpour.

Google built some of the first social apps for Android, including Twitter and others

WhatsApp is updating its mobile apps for a fresh and more streamlined look, while also introducing a new “darker dark mode,” the company announced on Thursday. The messaging app says…

WhatsApp’s latest update streamlines navigation and adds a ‘darker dark mode’

Plinky lets you solve the problem of saving and organizing links from anywhere with a focus on simplicity and customization.

Plinky is an app for you to collect and organize links easily

The keynote kicks off at 10 a.m. PT on Tuesday and will offer glimpses into the latest versions of Android, Wear OS and Android TV.

Google I/O 2024: How to watch

For cancer patients, medicines administered in clinical trials can help save or extend lives. But despite thousands of trials in the United States each year, only 3% to 5% of…

Triomics raises $15M Series A to automate cancer clinical trials matching

Welcome back to TechCrunch Mobility — your central hub for news and insights on the future of transportation. Sign up here for free — just click TechCrunch Mobility! Tap, tap.…

Tesla drives Luminar lidar sales and Motional pauses robotaxi plans

The newly announced “Public Content Policy” will now join Reddit’s existing privacy policy and content policy to guide how Reddit’s data is being accessed and used by commercial entities and…

Reddit locks down its public data in new content policy, says use now requires a contract

Eva Ho plans to step away from her position as general partner at Fika Ventures, the Los Angeles-based seed firm she co-founded in 2016. Fika told LPs of Ho’s intention…

Fika Ventures co-founder Eva Ho will step back from the firm after its current fund is deployed

In a post on Werner Vogels’ personal blog, he details Distill, an open-source app he built to transcribe and summarize conference calls.

Amazon’s CTO built a meeting-summarizing app for some reason

Paris-based Mistral AI, a startup working on open source large language models — the building block for generative AI services — has been raising money at a $6 billion valuation,…

Sources: Mistral AI raising at a $6B valuation, SoftBank ‘not in’ but DST is

You can expect plenty of AI, but probably not a lot of hardware.

Google I/O 2024: What to expect

Dating apps and other social friend-finders are being put on notice: Dating app giant Bumble is looking to make more acquisitions.

Bumble says it’s looking to M&A to drive growth

When Class founder Michael Chasen was in college, he and a buddy came up with the idea for Blackboard, an online classroom organizational tool. His original company was acquired for…

Blackboard founder transforms Zoom add-on designed for teachers into business tool

Groww, an Indian investment app, has become one of the first startups from the country to shift its domicile back home.

Groww joins the first wave of Indian startups moving domiciles back home from US

Technology giant Dell notified customers on Thursday that it experienced a data breach involving customers’ names and physical addresses. In an email seen by TechCrunch and shared by several people…

Dell discloses data breach of customers’ physical addresses

Featured Article

Fairgen ‘boosts’ survey results using synthetic data and AI-generated responses

The Israeli startup has raised $5.5M for its platform that uses “statistical AI” to generate synthetic data that it says is as good as the real thing.

17 hours ago
Fairgen ‘boosts’ survey results using synthetic data and AI-generated responses

Hydrow, the at-home rowing machine maker, announced Thursday that it has acquired a majority stake in Speede Fitness, the company behind the AI-enabled strength training machine. The rowing startup also…

Rowing startup Hydrow acquires a majority stake in Speede Fitness as their CEO steps down

Call centers are embracing automation. There’s debate as to whether that’s a good thing, but it’s happening — and quite possibly accelerating. According to research firm TechSci Research, the global…

Retell AI lets companies build ‘voice agents’ to answer phone calls

TikTok is starting to automatically label AI-generated content that was made on other platforms, the company announced on Thursday. With this change, if a creator posts content on TikTok that…

TikTok will automatically label AI-generated content created on platforms like DALL·E 3

India’s mobile payments regulator is likely to extend the deadline for imposing market share caps on the popular UPI (unified payments interface) payments rail by one to two years, sources…

India likely to delay UPI market caps in win for PhonePe-Google Pay duopoly

Line Man Wongnai, an on-demand food delivery service in Thailand, is considering an initial public offering on a Thai exchange or the U.S. in 2025.

Thai food delivery app Line Man Wongnai weighs IPO in Thailand, US in 2025

Ever wonder why conversational AI like ChatGPT says “Sorry, I can’t do that” or some other polite refusal? OpenAI is offering a limited look at the reasoning behind its own…

OpenAI offers a peek behind the curtain of its AI’s secret instructions

The federal government agency responsible for granting patents and trademarks is alerting thousands of filers whose private addresses were exposed following a second data spill in as many years. The…

US Patent and Trademark Office confirms another leak of filers’ address data

As part of an investigation into people involved in the pro-independence movement in Catalonia, the Spanish police obtained information from the encrypted services Wire and Proton, which helped the authorities…

Encrypted services Apple, Proton and Wire helped Spanish police identify activist

Match Group, the company that owns several dating apps, including Tinder and Hinge, released its first-quarter earnings report on Tuesday, which shows that Tinder’s paying user base has decreased for…

Match looks to Hinge as Tinder fails

Private social networking is making a comeback. Gratitude Plus, a startup that aims to shift social media in a more positive direction, is expanding its wellness-focused, personal reflections journal to…

Gratitude Plus makes social networking positive, private and personal

With venture totals slipping year-over-year in key markets like the United States, and concern that venture firms themselves are struggling to raise more capital, founders might be worried. After all,…

Can AI help founders fundraise more quickly and easily?