AI

Google’s Gemini isn’t the generative AI model we expected

Comment

Google logo on building
Image Credits: Alex Tai/SOPA Images/LightRocket / Getty Images

Google’s long-promised, next-gen generative AI model, Gemini, has arrived. Sort of.

The version of Gemini launching this week, Gemini Pro, is essentially a lightweight offshoot of a more powerful, capable Gemini model set to arrive… sometime next year. But I’m getting ahead of myself.

Yesterday in a virtual press briefing, members of the Google DeepMind team — the driving force behind Gemini, alongside Google Research — gave a high-level overview of Gemini (technically “Gemini 1.0”) and its capabilities.

Gemini, as it turns out, is actually a family of AI models — not just one. It comes in three flavors:

  • Gemini Ultra, the flagship Gemini model
  • Gemini Pro, a “lite” Gemini model
  • Gemini Nano, which is distilled to run on mobile devices like the Pixel 8 Pro*

*To make matters more confusing, Gemini Nano comes in two model sizes, Nano-1 (1.8 billion parameters) and Nano-2 (3.25 billion parameters) — targeting low- and high-memory devices, respectively.

Gemini
Image Credits: Google

The easiest place to try Gemini Pro is Bard, Google’s ChatGPT competitor, which as of today is powered by a fine-tuned version of Gemini Pro — at least in English in the U.S. (and only for text, not images). Sissie Hsiao, GM of Google Assistant and Bard, said during the briefing that the fine-tuned Gemini Pro delivers improved reasoning, planning and understanding capabilities over the previous model driving Bard.

We can’t independently confirm any of those improvements, I’ll note. Google didn’t allow reporters to test the models prior to their unveiling and, indeed, didn’t give live demos during the briefing.

Gemini Pro will also launch December 13 for enterprise customers using Vertex AI, Google’s fully managed machine learning platform, and then head to Google’s Generative AI Studio developer suite. (Some eagle-eyed users have already spotted Gemini model versions appearing in Vertex AI’s model garden.) Elsewhere, Gemini will arrive in the coming months in Google products like Duet AI, Chrome and Ads, as well as Search as a part of Google’s Search Generative Experience.

Gemini Nano, meanwhile, will launch soon in preview via Google’s recently released AI Core app, exclusive to Android 14 on the Pixel 8 Pro for now; Android developers interested in incorporating the model into their apps can sign up today for a sneak peek. On the Pixel 8 Pro first and other Android devices in the future, Gemini Nano will power features that Google previewed during the Pixel 8 Pro’s unveiling in October, like summarization in the Recorder app and suggested replies for supported messaging apps (starting with WhatsApp).

Natively multimodal

Gemini Pro — or at least the fine-tuned version of Gemini Pro powering Bard — isn’t much to write home about.

Hsiao says that Gemini Pro is more capable at tasks such as summarizing content, brainstorming and writing, and outperforms OpenAI’s GPT-3.5, the predecessor to GPT-4, in six benchmarks, including one (GSM8K) that measures grade school math reasoning. But GPT-3.5 is over a year old — hardly a challenging milestone to surpass at this point.

So what about Gemini Ultra? Surely it must be more impressive?

Somewhat.

Like Gemini Pro, Gemini Ultra was trained to be “natively multimodal” — in other words, pre-trained and fine-tuned on a large set of codebases, text in different languages, audio, images and videos. Eli Collins, VP of product at DeepMind, claims that Gemini Ultra can comprehend “nuanced” information in text, images, audio and code and answer questions relating to “complicated” topics, particularly math and physics.

Gemini
Image Credits: Google

In this respect, Gemini Ultra does several things better than rival OpenAI’s own multimodal model, GPT-4 with Vision, which can only understand the context of two modalities: words and images. Gemini Ultra can transcribe speech and answer questions about audio and videos (e.g. “What’s happening in this clip?”) in addition to art and photos.

“The standard approach to creating multimodal models involves training separate components for different modalities,” Collins said during the briefing. “These models are pretty good at performing certain tasks like describing an image, but they really struggle with more complicated conceptual and complicated reasoning tasks. So we designed Gemini to be natively multimodal.”

I wish I could tell you more about Gemini’s training datasets — I’m curious myself. But Google repeatedly refused to answer questions from reporters about how it collected Gemini’s training data, where the training data came from and whether any of it was licensed from a third party.

Collins did reveal that at least a portion of the data was from public web sources and that Google “filtered” it for quality and “inappropriate” material. But he didn’t address the elephant in the room: whether creators who might’ve unknowingly contributed to Gemini’s training data can opt out or expect/request compensation.

Google’s not the first to keep its training data close to the chest. The data isn’t only a competitive advantage, but a potential source of lawsuits pertaining to fair use. Microsoft, GitHub, OpenAI and Stability AI are among the generative AI vendors being sued in motions that accuse them of violating IP law by training their AI systems on copyrighted content, including artwork and e-books, without providing the creators credit or pay.

Gemini
Image Credits: Google

OpenAI, joining several other generative AI vendors, recently said it would allow artists to opt out of the training datasets for its future art-generating models. Google offers no such option for art-generating models or otherwise — and it seems that policy won’t change with Gemini.

Google trained Gemini on its in-house AI chips, tensor processing units (TPUs) — specifically TPU v4 and v5e (and in the future the v5p) — and is running Gemini models on a combination of TPUs and GPUs. (According to a technical whitepaper released this morning, Gemini Pro took “a matter of weeks” to train, with Gemini Ultra presumably taking much longer.) While Collins claimed that Gemini is Google’s “most efficient” large generative AI model to date and “significantly cheaper” than its multimodal predecessors, he wouldn’t say how many chips were used to train it or how much it cost — or the environmental impact of the training.

One article estimates that training a model the size of GPT-4 emits upwards of 300 metric tons of CO2 — significantly more than the annual emissions created by a single American (~5 tons of CO2). One would hope Google took steps to mitigate the impact, but since the company chose not to address the issue — at least not during the briefing this reporter attended — who can say?

A better model — marginally

In a prerecorded demo, Google showed how Gemini could be used to help with physics homework, solving problems step-by-step on a worksheet and pointing out possible mistakes in already filled-in answers.

In another demo — also prerecorded — Gemini was shown identifying scientific papers relevant to a particular problem set, extracting information from those papers and “updating” a chart from one by generating the formulas necessary to recreate the chart with more recent data.

“You can think of the work here as an extension of what [DeepMind] pioneered with ‘chain of thought prompting,’ which is that, with further instruction tuning, you can get the model to follow [more complex] instructions,” Collins said. “If you think of the physics homework example, you can give the model an image but also instructions to follow — for example, to identify the flaw in the math of the physics homework. So the model is able to handle more complicated prompts.”

Collins several times during the briefing touted Gemini Ultra’s benchmark superiority, claiming that the model exceeds current state-of-the-art results on “30 of the 32 widely used academic benchmarks used in large language model research and development.” But dive into the results, and it quickly becomes apparent that Gemini Ultra scores only marginally better than GPT-4 and GPT-4 with Vision across many of those benchmarks. 

Gemini
Image Credits: Google

For example, on GSM8K, Gemini Ultra answers 94.4% of the math questions correctly compared to 92% in GPT-4’s case. On the DROP benchmark for reading comprehension, Gemini Ultra barely edges out GPT-4 82.4% to 80.9%. On VQAv2, a “neural” image understanding benchmark, Gemini does a measly 0.6 percentage points better than GPT-4 with Vision. And Gemini Ultra bests GPT-4 by just 0.5 percentage points on the Big-Bench Hard reasoning suite.

Collins notes that Gemini Ultra achieves a “state-of-the-art” score of 59.4% on a newer benchmark, MMMU, for multimodal reasoning — ahead of GPT-4 with Vision. But in a test set for commonsense reasoning, HellaSwag, Gemini Ultra is actually a fair bit behind GPT-4 with a score of 87.8%; GPT-4 scores 95.3%.

Asked by a reporter if Gemini Ultra, like other generative AI models, falls victim to hallucinating — i.e. confidently inventing facts — Collins said that it “wasn’t a solved research problem.” Take that how you will.

Presumably, bias and toxicity are well within the realm of possibility for Gemini Ultra too given that even the best generative AI models today respond problematically and harmfully when prompted in certain ways. It’s almost certainly as Anglocentric as other generative AI models — Collins said that, while Gemini Ultra can translate between around 100 languages, no specific work has been done to localize the model to Global South countries.

Gemini
Image Credits: Google

In another key limitation, while the Gemini Ultra architecture supports image generation (as does Gemini Pro, in theory), that capability won’t make its way into the productized version of the model at launch. That’s perhaps because the mechanism is slightly more complex than how, say, ChatGPT generates images; rather than feed prompts to an image generator (like DALL-E 3, in ChatGPT’s case), Gemini outputs images “natively” without an intermediary step.

Collins didn’t provide a timeline as to when image generation might arrive — only an assurance that the work is “ongoing.”

Rushed out the gate

The impression one gets from this week’s Gemini “launch” is that it was a bit of a rush job.

At its annual I/O developer conference, Google promised that Gemini would deliver “impressive multimodal capabilities not seen in prior models” and “[efficiency] at tool and API integrations.” And in an interview with Wired in June, Demis Hassabis, the head and co-founder of DeepMind, described Gemini as introducing somewhat novel capabilities to the text-generating AI domain, such as planning and the ability to solve problems.

It may well be that Gemini Ultra is capable of all of this — and more. But the briefing yesterday wasn’t especially convincing, and — given Google’s previous, recent gen AI stumbles — I’d argue that it needed to be.

Gemini
Image Credits: Google

Google’s been playing catch-up in generative AI since early this year, racing after OpenAI and the company’s viral sensation ChatGPT. Bard was released in February to criticism for its inability to answer basic questions correctly; Google employees, including the company’s ethics team, expressed concerns over the accelerated launch timeline.

Reports later emerged that Google hired overworked, underpaid third-party contractors from Appen and Accenture to annotate Bard’s training data. The same may be true for Gemini; Google didn’t deny it yesterday, and the technical whitepaper says only that annotators were paid “at least a local living wage.”

Now, to be fair to Google, it’s making progress in the sense that Bard has improved substantially since launch and that Google has successfully injected dozens of its products, apps and services with new generative AI-powered features, powered by homegrown models like PaLM 2 and Imagen.

But reporting suggests that Gemini’s development has been troubled.

Gemini — which reportedly had direct participation from Google higher-ups, including Jeff Dean, the company’s most senior AI research executive — is said to be struggling with tasks like reliably handling non-English queries, which contributed to a delay in the launch of Gemini Ultra. (Gemini Ultra will only be available to select customers, developers, partners and “safety and responsibility experts” before rolling out to developers and enterprise customers followed by Bard “early next year,” Google says.) Google doesn’t even understand all of Gemini Ultra’s novel capabilities yet, Collins said — nor has it figured out a monetization strategy for Gemini. (Given the sky-high cost of AI model training and inferencing, I doubt it’ll be long before it does.)

Gemini
Image Credits: Google

So we’re left with Gemini Pro — and very possibly an underwhelming Gemini Ultra, especially if the model’s context window remains ~24,000 words as outlined in the technical whitepaper. (Context window refers to the text the model considers before generating any additional text.) GPT-4 handily beats that context window (~100,000 words), but context window admittedly isn’t everything; we’ll reserve judgement until we’re able to get our hands on the model.

Could it be that Google’s marketing, telegraphing that Gemini would be something truly remarkable rather than a slight move of the generative AI needle, is to blame for today’s dud of a product launch? Perhaps. Or perhaps building state-of-the-art generative AI models is really hard — even if you reorganize your entire AI division to juice up the process.

More TechCrunch

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

13 hours ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

15 hours ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities

For Mark Zuckerberg’s 40th birthday, his wife got him a photoshoot. Zuckerberg gives the camera a sly smile as he sits amid a carefully crafted re-creation of his childhood bedroom.…

Mark Zuckerberg’s makeover: Midlife crisis or carefully crafted rebrand?

Strava announced a slew of features, including AI to weed out leaderboard cheats, a new ‘family’ subscription plan, dark mode and more.

Strava taps AI to weed out leaderboard cheats, unveils ‘family’ plan, dark mode and more

We all fall down sometimes. Astronauts are no exception. You need to be in peak physical condition for space travel, but bulky space suits and lower gravity levels can be…

Astronauts fall over. Robotic limbs can help them back up.

Microsoft will launch its custom Cobalt 100 chips to customers as a public preview at its Build conference next week, TechCrunch has learned. In an analyst briefing ahead of Build,…

Microsoft’s custom Cobalt chips will come to Azure next week

What a wild week for transportation news! It was a smorgasbord of news that seemed to touch every sector and theme in transportation.

Tesla keeps cutting jobs and the feds probe Waymo

Sony Music Group has sent letters to more than 700 tech companies and music streaming services to warn them not to use its music to train AI without explicit permission.…

Sony Music warns tech companies over ‘unauthorized’ use of its content to train AI

Winston Chi, Butter’s founder and CEO, told TechCrunch that “most parties, including our investors and us, are making money” from the exit.

GrubMarket buys Butter to give its food distribution tech an AI boost

The investor lawsuit is related to Bolt securing a $30 million personal loan to Ryan Breslow, which was later defaulted on.

Bolt founder Ryan Breslow wants to settle an investor lawsuit by returning $37 million worth of shares

Meta, the parent company of Facebook, launched an enterprise version of the prominent social network in 2015. It always seemed like a stretch for a company built on a consumer…

With the end of Workplace, it’s fair to wonder if Meta was ever serious about the enterprise

X, formerly Twitter, turned TweetDeck into X Pro and pushed it behind a paywall. But there is a new column-based social media tool in town, and it’s from Instagram Threads.…

Meta Threads is testing pinned columns on the web, similar to the old TweetDeck

As part of 2024’s Accessibility Awareness Day, Google is showing off some updates to Android that should be useful to folks with mobility or vision impairments. Project Gameface allows gamers…

Google expands hands-free and eyes-free interfaces on Android