Is the modern data stack just old wine in a new bottle?


Bottle in a paper bag on a gray background. Dark bottle of alcohol in a crumpled brown bag. Close-up. Selective focus.
Image Credits: Mikhail Dmitriev (opens in a new window) / Getty Images

Ashish Kakran


Ashish Kakran, principal at Thomvest Ventures, is a product manager/engineer turned investor who enjoys supporting founders with a balance of technical know-how, customer insights, empathy with challenges and market knowledge.

More posts from Ashish Kakran

Remember the cable, phone and internet combo offers that used to land in our mailboxes? These offers were highly optimized for conversion, and the type of offer and the monthly price could vary significantly between two neighboring houses or even between condos in the same building.

I know this because I used to be a data engineer and built extract-transform-load (ETL) data pipelines for this type of offer optimization. Part of my job involved unpacking encrypted data feeds, removing rows or columns that had missing data, and mapping the fields to our internal data models. Our statistics team then used the clean, updated data to model the best offer for each household.

That was almost a decade ago. If you take that process and run it on steroids for 100x larger datasets today, you’ll get to the scale that midsized and large organizations are dealing with today.

For example, a single video conferencing call can generate logs that require hundreds of storage tables. Cloud has fundamentally changed the way business is done because of the unlimited storage and scalable compute resources you can get at an affordable price.

To put it simply, this is the difference between old and modern stacks:

Image Credits: Ashish Kakran, Thomvest Ventures

Why do data leaders today care about the modern data stack?

Self-service analytics

Citizen-developers want access to critical business dashboards in real time. They want automatically updating dashboards built on top of their operational and customer data.

For example, the product team can use real-time product usage and customer renewal data for decision-making. Cloud makes data truly accessible to everyone, but there is a need for self-service analytics compared to legacy, static, on-demand reports and dashboards.

Serving predictions

Once machine learning models are trained and ready to be used, there needs to be an easy way for different teams within an organization to benefit from them. This is typically achieved via a simple URL that accepts requests and returns predictions. Building these microservices and maintaining them is a core challenge when you are serving thousands of HTTP requests per second.

Data transformation

Data scientists want to be able to track older versions of data so that they can run experiments and know what version of data was used to complete training. This need is creating popular products that are optimized for in-place transformation of data.

Data quality

Some cutting-edge data organizations now prefer a data-centric approach to a model-centric approach. The belief that more data means better results is being replaced by the belief that the quality of data matters more. Typically, trained models are observed using two parameters, precision and recall. Precision tells you the proportion of positive identification that was actually correct, and recall tells you the proportion of actual positives that were correctly identified. Now imagine ensuring data quality for real-time data streams coming at you in a variety of different formats.

How do the legacy and modern data stacks compare?

Generally speaking, the modern data stack is about leveraging cloud resources to more effectively analyze complex streaming data.

Image Credits: Ashish Kakran, Thomvest Ventures

Here are a few key trends that enterprises should note:

  • The ETL process is becoming EL (T), which means the data is first dumped as it is received in certain locations like a data lake. This way, the storage systems don’t complain about the format of data as it is stored. Once the data is stored, then it can be processed in-place for analytics. By doing this, the firehose of continuous data can be more effectively managed, processed and analyzed.
  • Data observability has become critical. Data fails silently, and with rapidly evolving data stacks, it is necessary to be able to monitor data and set alerts to fix issues. You don’t want your trained models that teach Spanish to accidently train on English words or on missing data. One just can’t visually analyze and fix millions of rows of data.
  • The emergence of the chief data/AI/data and analytics officer. Data is such a complex problem that CIOs now have CDOs/CAOs/CDAOs reporting to them. While we started the 21st Century talking about data as competitive advantage, we are now in a time when unmanaged data becomes toxic. There are regulatory laws about how data can be used, shared or handled. How do you comply with a customer’s request to delete all their data if you don’t even know where and in what form it is stored in?


Each step of the data analysis process is ripe for disruption. While visionary founders are building cloud-native tools to win emerging data categories, the incumbents have been slower to react. Whether building data pipelines or ML pipelines, organizations today have a variety of open and closed source technologies to choose from.

Image Credits: Ashish Kakran, Thomvest Ventures

Practitioners are spoilt for choices when building enterprise data pipelines.

Image Credits: Ashish Kakran, Thomvest Ventures

The efficient data stack for data engineers, database developers and data scientists changes every four to five years. Companies moved to big data analytics to analyze large datasets in private data centers, and though it promised many benefits, big data remains technically complex to implement. The modern data stack makes this easy by leveraging the scale, reliability and resilience of the cloud.

The rules are being rewritten on how data will be used for competitive advantage, and it won’t be long before the winners emerge. Incumbents are redesigning their legacy software to run on the cloud, but our bet is on nimble teams run by visionary founders.

More TechCrunch

Featured Article

I’m rooting for Melinda French Gates to fix tech’s broken ‘brilliant jerk’ culture

Women in tech still face a shocking level of mistreatment at work. Melinda French Gates is one of the few working to change that.

2 hours ago
I’m rooting for Melinda French Gates to fix tech’s  broken ‘brilliant jerk’ culture

Blue Origin has successfully completed its NS-25 mission, resuming crewed flights for the first time in nearly two years. The mission brought six tourist crew members to the edge of…

Blue Origin successfully launches its first crewed mission since 2022

Creative Artists Agency (CAA), one of the top entertainment and sports talent agencies, is hoping to be at the forefront of AI protection services for celebrities in Hollywood. With many…

Hollywood agency CAA aims to help stars manage their own AI likenesses

Expedia says Rathi Murthy and Sreenivas Rachamadugu, respectively its CTO and senior vice president of core services product & engineering, are no longer employed at the travel booking company. In…

Expedia says two execs dismissed after ‘violation of company policy’

Welcome back to TechCrunch’s Week in Review. This week had two major events from OpenAI and Google. OpenAI’s spring update event saw the reveal of its new model, GPT-4o, which…

OpenAI and Google lay out their competing AI visions

When Jeffrey Wang posted to X asking if anyone wanted to go in on an order of fancy-but-affordable office nap pods, he didn’t expect the post to go viral.

With AI startups booming, nap pods and Silicon Valley hustle culture are back

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

A new crop of early-stage startups — along with some recent VC investments — illustrates a niche emerging in the autonomous vehicle technology sector. Unlike the companies bringing robotaxis to…

VCs and the military are fueling self-driving startups that don’t need roads

When the founders of Sagetap, Sahil Khanna and Kevin Hughes, started working at early-stage enterprise software startups, they were surprised to find that the companies they worked at were trying…

Deal Dive: Sagetap looks to bring enterprise software sales into the 21st century

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI moves away from safety

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

2 days ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

2 days ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities

For Mark Zuckerberg’s 40th birthday, his wife got him a photoshoot. Zuckerberg gives the camera a sly smile as he sits amid a carefully crafted re-creation of his childhood bedroom.…

Mark Zuckerberg’s makeover: Midlife crisis or carefully crafted rebrand?

Strava announced a slew of features, including AI to weed out leaderboard cheats, a new ‘family’ subscription plan, dark mode and more.

Strava taps AI to weed out leaderboard cheats, unveils ‘family’ plan, dark mode and more