IBM builds a more diverse million-face data set to help reduce bias in AI


Image Credits: IBM (opens in a new window)

Encoding biases into machine learning models, and in general into the constructs we refer to as AI, is nearly inescapable — but we can sure do better than we have in past years. IBM is hoping that a new database of a million faces more reflective of those in the real world will help.

Facial recognition is being relied on for everything from unlocking your phone to your front door, and is being used to estimate your mood or likelihood to commit criminal acts — and we may as well admit many of these applications are bunk. But even the good ones often fail simple tests like working adequately with people of certain skin tones or ages.

This is a multi-layered problem, and of course a major part of it is that many developers and creators of these systems fail to think about, let alone audit for, a failure of representation in their data.

Sen. Harris tells federal agencies to get serious about facial recognition risks

That’s something everyone needs to work harder at, but the actual data matters, as well. How can you train a computer vision algorithm to work well with all people if there’s no set of data that has all people in it?

Every set will necessarily be limited, but building one that has enough of everyone in it that no one is effectively systematically excluded is a worthwhile goal. And with its new million-image Diversity in Faces (DiF) set, that’s what IBM has attempted to create. As the paper introducing the set reads:

For face recognition to perform as desired – to be both accurate and fair – training data must provide sufficient balance and coverage. The training data sets should be large enough and diverse enough to learn the many ways in which faces inherently differ. The images must reflect the diversity of features in faces we see in the world.

The faces are sourced from a huge 100-million-image data set (Flickr Creative Commons), through which another machine learning system prowled and found as many faces as it could. These were then isolated and cropped, and that’s when the real work started.

These sets are meant to be ingested by other machine learning algorithms, so they need to be both diverse and accurately labeled. So the DiF set has a million faces, and each one is accompanied by metadata describing things like the distance between the eyes, the size of the forehead and all that. All these measurements together create the “faceprint” that a system would use to, for example, match one image to another of the same person.

But any given set of those measurements may or may not be good for identifying people, or accurate for a certain ethnic group, or what have you. So the IBM team put together a revised set that not only includes simple things like distances between features, but how those measures relate to one another; for example, how the ratio of this area above the eyes to that area below the nose. Skin color, as well as contrast and types of coloration, are also included.

In a move that is long overdue, gender in the set is detected and encoded according to a spectrum, not a binary. As gender is itself nonbinary, it makes sense to represent it as any fraction between 0 and 1. So what you really have is a metric describing how individuals present on a scale from feminine to masculine.

Age is also automatically estimated, but for these two last values a sort of “reality check” is also included in the form of a “subjective annotation” field in which people were asked to label faces male or female and guess at age. Here there may be bias re-encoded, as sourcing from humans tends to introduce it. All these make for a considerably broader set of measurements than any other publicly available facial recognition training set.

You may wonder why race or ethnicity isn’t a category — IBM’s John R. Smith, who led the creation of the set, explained in an email to me:

Ethnicity and race are often used interchangeably, although the first is more related to culture and the second is related to biology. The boundaries within either are not distinct, and labeling is highly subjective and noisy as found in prior work. Instead, we chose to focus on coding schemes that could be determined reliably and have some kind of continuous scale that could feed diversity analysis. We may return to some of these subjective categories.

Even with a million faces, however, there’s no guarantee that this set is adequately representative — that enough of all groups and sub-sets are present to prevent bias. In fact, Smith seems sure it isn’t, which is really the only logical position:

We could not ensure this in this first version of the data set. But, it is the goal. First, we need to figure out the dimensions for diversity. We do that by starting with data and coding schemes as in this release. Then we iterate. Hopefully, we bring along the larger research community and industry in the process.

In other words, it’s a work in progress. But so is all of science, and despite the frequent missteps and broken promises, facial recognition is inarguably a technology with which we all will be engaging in the future, whether we like it or not.

Any AI system is only as good as the data on which it’s built, so improvements to the data will trickle down for a long time. Like any other set, DiF will likely go through iterations addressing shortcomings, adding more content and integrating suggestions or requests from researchers using it. You can request access here.

More TechCrunch

Blue Origin has successfully completed its NS-25 mission, resuming crewed flights for the first time in nearly two years. The mission brought six tourist crew members to the edge of…

Blue Origin successfully launches its first crewed mission since 2022

Creative Artists Agency (CAA), one of the top entertainment and sports talent agencies, is hoping to be at the forefront of AI protection services for celebrities in Hollywood. With many…

Hollywood agency CAA aims to help stars manage their own AI likenesses

Expedia says Rathi Murthy and Sreenivas Rachamadugu, respectively its CTO and senior vice president of core services product & engineering, are no longer employed at the travel booking company. In…

Expedia says two execs dismissed after ‘violation of company policy’

Welcome back to TechCrunch’s Week in Review. This week had two major events from OpenAI and Google. OpenAI’s spring update event saw the reveal of its new model, GPT-4o, which…

OpenAI and Google lay out their competing AI visions

When Jeffrey Wang posted to X asking if anyone wanted to go in on an order of fancy-but-affordable office nap pods, he didn’t expect the post to go viral.

With AI startups booming, nap pods and Silicon Valley hustle culture are back

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

A new crop of early-stage startups — along with some recent VC investments — illustrates a niche emerging in the autonomous vehicle technology sector. Unlike the companies bringing robotaxis to…

VCs and the military are fueling self-driving startups that don’t need roads

When the founders of Sagetap, Sahil Khanna and Kevin Hughes, started working at early-stage enterprise software startups, they were surprised to find that the companies they worked at were trying…

Deal Dive: Sagetap looks to bring enterprise software sales into the 21st century

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI moves away from safety

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

2 days ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

2 days ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities

For Mark Zuckerberg’s 40th birthday, his wife got him a photoshoot. Zuckerberg gives the camera a sly smile as he sits amid a carefully crafted re-creation of his childhood bedroom.…

Mark Zuckerberg’s makeover: Midlife crisis or carefully crafted rebrand?

Strava announced a slew of features, including AI to weed out leaderboard cheats, a new ‘family’ subscription plan, dark mode and more.

Strava taps AI to weed out leaderboard cheats, unveils ‘family’ plan, dark mode and more

We all fall down sometimes. Astronauts are no exception. You need to be in peak physical condition for space travel, but bulky space suits and lower gravity levels can be…

Astronauts fall over. Robotic limbs can help them back up.