Three ways to avoid bias in machine learning


Image Credits: peepo / Getty Images

Vince Lynch


Vince Lynch is CEO of IV.AI, an artificial intelligence company that teaches machines how to understand human language so companies can better engage, understand and serve their customers.

At this moment in history it’s impossible not to see the problems that arise from human bias. Now magnify that by compute and you start to get a sense for just how dangerous human bias via machine learning can be. The damage can be twofold:

  • Influence. If the AI said so it must be true… people trust outputs of AI, so if human bias is missed in the training it could compound the problem by infecting more people;
  • Automation. Sometimes AI models are plugged into a programmatic function, which could lead to the automation of bias. 

But there is potentially a silver machine-learned lining. Because AI can help expose truth inside messy data sets, it’s possible for algorithms to help us better understand bias we haven’t already isolated, and spot ethically questionable ripples in human data so we can check ourselves. Exposing human data to algorithms exposes bias, and if we are considering the outputs rationally, we can use machine learning’s aptitude for spotting anomalies.

But the machines can’t do it on their own. Even unsupervised learning is semi-supervised, as it requires data scientists to choose the training data that goes into the models. If a human is the chooser, bias can be present. How the heck do we tackle such a bias beast? We will attempt to pick it apart.

The landscape of ethical concerns with AI

Bad examples abound. Consider the finding from Carnegie Mellon that showed that women were shown significantly fewer online ads for high-paying jobs than men were. Or recall the sad case of Tay, Microsoft’s teen slang Twitter bot that had to be taken down after producing racist posts.

In the near future, such mistakes could result in hefty fines or compliance investigation, a conversation that’s already occurring in the U.K. parliament. All mathematicians and machine learning engineers should consider bias to some degree, but that degree varies from instance to instance. A small company with limited resources will often be forgiven for accidental bias as long as the algorithmic vulnerability is fixed quickly; a Fortune 500 company, which presumably has the resources to ensure an unbiased algorithm, will be held to a tighter standard.

Of course, an algorithm that recommends novelty T-shirts does not need nearly as much oversight as an algorithm that decides what dose of radiation to give to a cancer patient. It’s these high-stakes decisions that will become the most pronounced when legal liability enters the discussion.

It’s important for builders and business leaders to establish a process for monitoring the ethical behavior of their AI systems.

Three keys to managing bias when building AI

There are signs of existing self-correction in the AI industry: Researchers are looking at ways to reduce bias and strengthen ethics in rule-based artificial systems by taking human biases into account, for example.

These are good practices to follow; it’s important to be thinking proactively about ethics regardless of the regulatory environment. Let’s take a look at several points to keep in mind as you work on your AI.

1. Choose the right learning model for the problem.

There’s a reason all AI models are unique: Each problem requires a different solution and provides varying data resources. There’s no single model to follow that will avoid bias, but there are parameters that can inform your team as it’s building.

For example, supervised and unsupervised learning models have their respective pros and cons. Unsupervised models that cluster or do dimensional reduction can learn bias from their data set. If belonging to group A highly correlates to behavior B, the model can mix up the two. And while supervised models allow for more control over bias in data selection, that control can introduce human bias into the process.

Non-bias through ignorance — excluding sensitive information from the model — may seem like a workable solution, but it still has vulnerabilities. In college admissions, sorting applicants by ACT scores is standard, but taking their ZIP code into account might seem discriminatory. But because test scores might be affected by the preparatory resources in a given area, including the ZIP code in the model could actually decrease bias.

You have to require your data scientists to identify the best model for a given situation. Sit down and talk them through the different strategies they can take when building a model. Troubleshoot ideas before committing to them. It’s better to find and fix vulnerabilities now — even if it means taking longer — than to have regulators find them later on.

2. Choose a representative training data set.

Your data scientists may do much of the leg work, but it’s up to everyone participating in an AI project to actively guard against bias in data selection. There’s a fine line you have to walk. Making sure the training data is diverse and includes different groups is essential, but segmentation in the model can be problematic unless the real data is similarly segmented.

It’s inadvisable — both computationally and in terms of public relations — to have different models for different groups. When there is insufficient data for one group, you could possibly use weighting to increase its importance in training, but this should be done with extreme caution. It can lead to unexpected new biases.

For example, if you have only 40 people from Cincinnati in a data set and you try to force the model to consider their trends, you might need to use a large weight multiplier. Your model would then have a higher risk of picking up on random noise as trends — you could end up with results like “people named Brian have criminal histories.” This is why you need to be careful with weights, especially large ones.

3. Monitor performance using real data.

No company is knowingly creating biased AI, of course — all these discriminatory models probably worked as expected in controlled environments. Unfortunately, regulators (and the public) don’t typically take best intentions into account when assigning liability for ethical violations. That’s why you should be simulating real-world applications as much as possible when building algorithms.

It’s unwise, for example, to use test groups on algorithms already in production. Instead, run your statistical methods against real data whenever possible. Ask the data team to check simple test questions like “Do tall people default on AI-approved loans more than short people?” If they do, determine why.

When you’re examining data, you could be looking for two types of equality: equality of outcome and equality of opportunity. If you’re working on AI for approving loans, result equality would mean that people from all cities get loans at the same rates; opportunity equality would mean that people who would have returned the loan if given the chance are given the same rates regardless of city. Without the latter, the former could still hide if one city has a culture that makes defaulting on loans common.

Result equality is easier to prove, but it also means you’ll knowingly accept potentially skewed data. While it’s harder to prove opportunity equality, it is at least valid morally. It’s often practically impossible to ensure both types of equality, but oversight and real-world testing of your models should give you the best shot.

Eventually, these ethical AI principles will be enforced by legal penalties. If New York City’s early attempts at regulating algorithms are any indication, those laws will likely involve government access to the development process, as well as stringent monitoring of the real-world consequences of AI. The good news is that by using proper modeling principles, bias can be greatly reduced or eliminated, and those working on AI can help expose accepted biases, create a more ethical understanding of tricky problems and stay on the right side of the law — whatever it ends up being.

More TechCrunch

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

13 hours ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

15 hours ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities

For Mark Zuckerberg’s 40th birthday, his wife got him a photoshoot. Zuckerberg gives the camera a sly smile as he sits amid a carefully crafted re-creation of his childhood bedroom.…

Mark Zuckerberg’s makeover: Midlife crisis or carefully crafted rebrand?

Strava announced a slew of features, including AI to weed out leaderboard cheats, a new ‘family’ subscription plan, dark mode and more.

Strava taps AI to weed out leaderboard cheats, unveils ‘family’ plan, dark mode and more

We all fall down sometimes. Astronauts are no exception. You need to be in peak physical condition for space travel, but bulky space suits and lower gravity levels can be…

Astronauts fall over. Robotic limbs can help them back up.

Microsoft will launch its custom Cobalt 100 chips to customers as a public preview at its Build conference next week, TechCrunch has learned. In an analyst briefing ahead of Build,…

Microsoft’s custom Cobalt chips will come to Azure next week

What a wild week for transportation news! It was a smorgasbord of news that seemed to touch every sector and theme in transportation.

Tesla keeps cutting jobs and the feds probe Waymo

Sony Music Group has sent letters to more than 700 tech companies and music streaming services to warn them not to use its music to train AI without explicit permission.…

Sony Music warns tech companies over ‘unauthorized’ use of its content to train AI

Winston Chi, Butter’s founder and CEO, told TechCrunch that “most parties, including our investors and us, are making money” from the exit.

GrubMarket buys Butter to give its food distribution tech an AI boost

The investor lawsuit is related to Bolt securing a $30 million personal loan to Ryan Breslow, which was later defaulted on.

Bolt founder Ryan Breslow wants to settle an investor lawsuit by returning $37 million worth of shares

Meta, the parent company of Facebook, launched an enterprise version of the prominent social network in 2015. It always seemed like a stretch for a company built on a consumer…

With the end of Workplace, it’s fair to wonder if Meta was ever serious about the enterprise

X, formerly Twitter, turned TweetDeck into X Pro and pushed it behind a paywall. But there is a new column-based social media tool in town, and it’s from Instagram Threads.…

Meta Threads is testing pinned columns on the web, similar to the old TweetDeck

As part of 2024’s Accessibility Awareness Day, Google is showing off some updates to Android that should be useful to folks with mobility or vision impairments. Project Gameface allows gamers…

Google expands hands-free and eyes-free interfaces on Android