Biotech & Health

Google unleashes deep learning tech on language with Neural Machine Translation

Comment

Image Credits: razum (opens in a new window) / Shutterstock (opens in a new window)

Translating from one language to another is hard, and creating a system that does it automatically is a major challenge, partly because there are just so many words, phrases and rules to deal with. Fortunately, neural networks eat big, complicated data sets for breakfast. Google has been working on a machine learning translation technique for years, and today is its official debut.

The Google Neural Machine Translation system, deployed today for Chinese-English queries, is a step up in complexity from existing methods. Here’s how things have evolved (in a nutshell).

Word by word and phrase by phrase

A very simple technique for translating — one a kid or simple computer could do — would be to simply look up each word encountered and switch it with the equivalent word in another language. Of course, the nuances of speech and often the meaning of an utterance can be lost, but this rudimentary word-by-word system can still impart the gist at minimal fuss.

Because language is naturally phrase-based, the logical next move is to learn as many of those phrases and semi-formal rules, applying those, as well. But it requires a lot of data (not just a German-English dictionary) and serious statistical chops to know the difference between, for example, “run a mile,” “run a test” and “run a store.” Computers are good at that, so once they took over, phrase-based translation became the norm.

More complexity lurks still in the rest of the sentence, of course, but it’s another jump in complexity, subtlety and the computational power necessary to parse it. Ingesting complex rulesets and making a predictive model is a specialty of neural networks, and researchers have been looking into this method — but Google has beaten the others to the punch.

GNMT is the latest and by far the most effective to successfully leverage machine learning in translation. It looks at the sentence as a whole, while keeping in mind, so to speak, the smaller pieces like words and phrases.

Google's animation shows how the parts of a Chinese sentence are detected and their relevance to the words to be translated weighed (the blue lines).
Google’s animation shows how the parts of a Chinese sentence are detected and their relevance to the words to be translated weighed (the blue lines).

It’s much like the way we look at an image as a whole while being aware of individual pieces — and that’s not a coincidence. Neural networks have been trained to identify images and objects in ways imitative of human perception, and there’s more than a passing resemblance between finding the gestalt of an image and that of a sentence.

Interestingly, there’s little in there actually specific to language: The system doesn’t know the difference between the future perfect and future continuous, and it doesn’t break up words based on their etymologies. It’s all math and stats, no humanity. Reducing translation to a mechanical task is admirable, but in a way chilling — though admittedly, in this case, little but a mechanical translation is called for, and artifice and interpretation are superfluous.

Advancing the art by removing the art

The paper describing GNMT points out several advances — rather technical ones — that reduce the computational overhead required for processing language this way and avoid its pitfalls.

For example, the system tends to choke on rare words, since their rarity makes them difficult to recognize and associate with other words. GNMT gets around this by breaking uncommon words into smaller pieces that it treats as individual words and learns the associations for.

Actual computing time is reduced by limiting the precision of the math involved and using Google’s Tensor Processing Units, custom hardware designed with neural network training in mind.

The input and output systems are very different, but still exchange information where they interface, allowing them to be trained together and form a more unified in-out process. That’s about as specific as I can get on that one; the details are in the paper if you think you can handle them.

The resulting system is highly accurate, beating phrase-based translators and approaching human levels of quality. You know it has to be good when Google just deploys it to its public website and app for a difficult process like Chinese to English.

image00

Spanish and French also tested well, and you can expect GNMT to expand in that direction over the coming months.

Black box

One of the downsides is that, as with so many predictive models produced by machine learning, we don’t really know how it works.

“GNMT is like other neural net models — a large set of parameters that go through training, difficult to probe,” Google’s Charina Choi told TechCrunch.

It’s not that they have no idea whatsoever, but the many moving parts of phrase-based translators are designed by people, and when a piece goes wrong or becomes outdated, it can be swapped out. Because neural networks essentially design themselves through millions of iterations, if something goes wrong, we can’t reach in and replace a part. Training a new system isn’t trivial, though it can be done quickly (and likely will be done regularly as improvements are conceived).

Google is betting big on machine learning, and this translation tool, now live for web and mobile queries, is perhaps the company’s most public demonstration yet. Neural networks may be complex, mysterious and little creepy, but it’s hard to argue with their effectiveness.

More TechCrunch

Ahead of the AI safety summit kicking off in Seoul, South Korea later this week, its co-host the United Kingdom is expanding its own efforts in the field. The AI…

UK opens office in San Francisco to tackle AI risk

Companies are always looking for an edge, and searching for ways to encourage their employees to innovate. One way to do that is by running an internal hackathon around a…

Why companies are turning to internal hackathons

Featured Article

I’m rooting for Melinda French Gates to fix tech’s broken ‘brilliant jerk’ culture

Women in tech still face a shocking level of mistreatment at work. Melinda French Gates is one of the few working to change that.

13 hours ago
I’m rooting for Melinda French Gates to fix tech’s  broken ‘brilliant jerk’ culture

Blue Origin has successfully completed its NS-25 mission, resuming crewed flights for the first time in nearly two years. The mission brought six tourist crew members to the edge of…

Blue Origin successfully launches its first crewed mission since 2022

Creative Artists Agency (CAA), one of the top entertainment and sports talent agencies, is hoping to be at the forefront of AI protection services for celebrities in Hollywood. With many…

Hollywood agency CAA aims to help stars manage their own AI likenesses

Expedia says Rathi Murthy and Sreenivas Rachamadugu, respectively its CTO and senior vice president of core services product & engineering, are no longer employed at the travel booking company. In…

Expedia says two execs dismissed after ‘violation of company policy’

Welcome back to TechCrunch’s Week in Review. This week had two major events from OpenAI and Google. OpenAI’s spring update event saw the reveal of its new model, GPT-4o, which…

OpenAI and Google lay out their competing AI visions

When Jeffrey Wang posted to X asking if anyone wanted to go in on an order of fancy-but-affordable office nap pods, he didn’t expect the post to go viral.

With AI startups booming, nap pods and Silicon Valley hustle culture are back

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

A new crop of early-stage startups — along with some recent VC investments — illustrates a niche emerging in the autonomous vehicle technology sector. Unlike the companies bringing robotaxis to…

VCs and the military are fueling self-driving startups that don’t need roads

When the founders of Sagetap, Sahil Khanna and Kevin Hughes, started working at early-stage enterprise software startups, they were surprised to find that the companies they worked at were trying…

Deal Dive: Sagetap looks to bring enterprise software sales into the 21st century

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI moves away from safety

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

3 days ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

3 days ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info

The prospects for troubled banking-as-a-service startup Synapse have gone from bad to worse this week after a United States Trustee filed an emergency motion on Wednesday.  The trustee is asking…

A US Trustee wants troubled fintech Synapse to be liquidated via Chapter 7 bankruptcy, cites ‘gross mismanagement’

U.K.-based Seraphim Space is spinning up its 13th accelerator program, with nine participating companies working on a range of tech from propulsion to in-space manufacturing and space situational awareness. The…

Seraphim’s latest space accelerator welcomes nine companies

OpenAI has reached a deal with Reddit to use the social news site’s data for training AI models. In a blog post on OpenAI’s press relations site, the company said…

OpenAI inks deal to train AI on Reddit data

X users will now be able to discover posts from new Communities that are trending directly from an Explore tab within the section.

X pushes more users to Communities